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ESTIMATION OF A LARGE AREA CROP ACREAGE

INVENTORY USING REMOTE SENSING TECHNOLOGY

0. SUMMARY '

Based upon the existing remote sensing capabilities, the useful informa-
tion about the acreage of some crop of economic interest can be obtained from
multispectral scanner measﬁrements acquired over an agricultural area. If
the goal is to determine the acreages covered by various crops over some large
area such as the continental United States, then some sampling procedure will
be n-cessary since it would not be practical to collect and process a set of
scanner data covering the entire area.

In this report we develop a model for the evaluation of acreages (propor-
tions) of different crop-types over a geographical area using a classification
approach and give methods for estimating the crop acreages. If prior informa-
tion is available on the classification errors associated with the classifica-
tion algorithm used, the estimation method provides the best estimate for the
crop acreages. Otherwise, the method would first require a certain amount of
ground truth in the area of interest to be obtained so that the classifier
can be trained and the classification errors estimated.

If the main interest lies in estimating the acreages of a specific crop-
'type such as wheat, it is suggested to treat the problem as a two-crop problem:
wheat vs. non-wheat, since this simplifies the estimatio:: problem considerably.
The error analysis and the sample size problem is investigated for the two-
crop approach. Certain numerical results for sample sizes are given for a
JSC-ERTS-1 data example on wheat identification performance in Hill County,
Montana and Burke County, North Dakota. Lastly, for a large area crop acreages
inventory we suggest a sampling scheme for acquiring sample data and discuss

the problem of crop acreage estimation and the error analysis.



1. INTRODUCTION

In recent years the development of several automatic data processing
techniques for statistical pattern recognition has enhanced c0nsiderably
the scope of remote sensingAtechnology for the study of earth resources,
particularly in the field of agriculture. It now appears that a system
for performing a large area crop inventory can be developed on the basis
of existing remote sensing capabilifies.

The data handling and analysis for rémotely sensed agricultural resources
over a large érea may not be feasible both from technical and economical view-
points if each scanned data point is being processed for its recognition. For
example, if a complete recognition is desired for an ERTS scene, it would re-
quire processing over half a million data points. As such, an important
requirement for any system to be developed for a large area crop inventory
should be to have a suitable crop acreage estimation technique that uses
only a sample of the unlabeled remotely sensed data obtained for the area
of interest for the purpose of recognition.

In this report we discuss a large area crop acreage estimation procedure
that would meet this requirement for the system. Wé develop a model for the
evaluation of crop proportions for an agricultural areaz and provide methods
for crop acreage estimation, taking into consideration the classification
errors likely to arise in labeling remotely sensed data. The error analysis
for the model is studied and expressians for variances of different estimates
are given, in general as well as in specific cases. For the ﬁwo—crop situa-
tion, the problem of sample siée is investigated and certain numerical results
for the sample size are provided. Next, we extend the scope of our study to

investigate a large area crop inventory.



2. CROP PROPORTIONS MODEL

Suppose there ére m different crops rl,tz,...,nm in the agricultura}
area of interest and that every data point is identifiable with respect to
one of these crops. Let 1 denote the proportion of pixels in L 1=1.22 ; « eie15Ms
Considering a random sample of n unlabeled remotely sensed data points, let
n, be the number of points classified into T i=1,2,...,m,using a classifi-
cation algorithm. Suppose n(ilj) is the number of data points to be in nj
but classified into T then

n, = n(ill) + n(i|2) £ e n(ilm)

and

; _
n, ol o
i z n(ilj) ) i=1,2,...,m (2.1)
n n

j=1

are the observed crop proportions for the sample data under the classification
algorithm used. The observed propocrtion ni/n is a biased estimate of 1 since

it estimates unbiasedly E[ni/n] given by
m
e = z E [_rii_l_i)_] [
al n
a=1

m
z P P(i|3) (2.2)
j=1
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where P(i|j) denotes the probability of classifying a data point from 7.
3]
into L under the classification algorithm. It may be pointed out that
processing of remotely sensed data for total recognition would lead to an

evaluation of the expected claz:ified crop proportions e,'s instead of the
_ i



actual crop proportions pi's. Of course, if the classification algorithm
performs so well that the classifiction errors are sufficiently small, e
will be close enough to P, i=1,2,...,m. But most statistical pattern
recognition techniques for processing of remotely sensed data are expected
to be fallible and thereby the two types of proportions are not going to be
near equal. Henceforth in our discussion we will assume that P(ilj) >0
for at least one j different from i.

Denoting the observed proportion ni/n by ;i,i=l,2,...,m, it follows

from (2.2) that

-

e = Efe]
or
e = Pp (2.3)
where
e ] Py ]
e= le, |, B¥ | B
and
Tealy  eal2) . . ... P@)
P=[P(2[1) P(]2).....P2w| .
| P(m|1) P(m|2) P(m|m)|

Accordingly, the vector of actual crop proportions

p=P e ' (25h)

m
are obtained subject to 22 p, = 1 provided e and P are known.
i=1 '
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case of p not only the estimate p itself but bias as well as mean square

x -~

error quantities will also depend upon how P is obtained. One solution for P

and the probability distribution of its components is suggested therein, as well.

3. TWO-CROP APPROACH

Sometimes the main interest is in estimating the acreage of a specific
crop type in the area of interest. In that case one approach to the acreage
estimation problem lies in considering T to be the specific crop type and
T, to be the "other crop'" consisting of the remainder of the crops, and then
treating it as a two-crop situation. However, lumping of different crops
together for the "other crop" would require certain caution and should be
judged in terms of the classification performance for the two-crop case as
against that for the case of the original set of crops. For the Gaussian
maximum likelihood classifier, Basu and Odell (1973) have investigated this
problem and have shown that the classification performance for the class of
main interest may or may not improve when the classification is performed
using the two-class approach. But the problem under this approach is
greatly simplified and, barring extreme cases, perhaps it will provide
satisfactory solutions in the remote sensing situation when interest only

" lies in ascertaining the acreage cover of one specific crop.

and P(O|1) = ¢

let P(1]0) = o .

Now considering two crops 7w, and =

1l 0’ 1.

for the probabilities of misclassification when a certain classifier is

used. We will assume that Ol - éz # 1. Then



If pl and P, are the actual crop proportions of Lo and Ty respectively,

whereas ey and e, are their respective expected classified crop proportions

under the classifier used, it follows from (2.3) that

= - o) - 3k
e; (1 ®2) Py + % (l'pl) (3.1)
and
e, = 1—el
On the other hand,
e, -0
1 1
= —_————— : .2
P1 T 15 0 (3.2)
and
N Sk T
2 l-®1-®2 2 1l
Suppose from a random sample of n unlabeled remotely sensed data points,
ny points were classified into Ty and n, = n-ny points were classified into
T by the classifier. Then
n
= i
el=T, (3.3)
e. = 0 ;
- 1 1
P1 = 1o (3.4)
1 @l ¢,
2 @l and Q? are known, and
N @, = 5
” 1 1
Py = T (3.5)
l—@l—éz
when @1 and @2 are unknown and have estimates @l and @2 respectively. Clearly
~ l ~
Var(p,) = — Var(e.,) . (3.6)
1 2 I
(l—iL‘l —@2)

A
A

For the estimate 12 in (3.5), it easily follows that
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Bias (f,l) = (e,~0,) E[T-6] - E[T(él-q»l)] (3.7)

where

~ -~ _1
(l—@l—éz)

=
I

and

=1
However, evalution of expected values in (3.7) may be quite a difficult job
and so an exact bias value may not be accessible. An evaluation of the
MSE(pl) in its exact form is even more difficult. As such we instead con-

sider having it in the following approximate form obtained in Appendix 1

using the §-method. For a discussion on the method, see Rao (1965).

MSE(p,) = (Var(e,) + [1-————] Var(®.,)+[=———=] Var(2,)) (3.8)
i 2 i 1-¢_-9 1 1-9_-9 2
[l—@l—QZ] 1 2 2
or
MSE(pl) = 5 [Var(el)4-(l—pl) Var(@l) + Py Var(¢,.) ] (3.9)
[ieg | 2 .

where Py is given by (3.2).

SamEle Size

Considering simple random sampling with pixel as the sampling unit, we
discuss the problem of sample size necessary to minimize the sampling cost
or to achieve a desired amount of precision for the proportion estimate, given

that the other is specified. Suppose total sample consists of N==n4—Nl4-N2

data points selected randomly, where n is the size of sample of unlabeled

remotely- sensed data used for estimating el and Nl and N2 are sample sizes

3

for ground truth data from ™ and ™ and are used to estimate Ql ana ¢

lal ~ "

el, @l and @2 are all obtained as observed

2’

respectively. The estimates

sample proportions and thus 1t follows from (3.6) and (3.9) that



n e (1 -e

)
Var(pl) = - .

2
n(l—Q1—¢2)

and
A e (l=c ) 5. (1-0.) o (140.)
MSE(p,) = 4 . 1 +(l—-pl)2 —1-—N———1—+ pi _2_N,_2_ . (3.10)
(1 ~¢,) 1 2

Suppose we want to obtain sample sizes necessary to minimize the sampling
cost when Var(pl) and MSE(pl) are specified, say each equal to or smaller
than 02. In the case of @l, 2

rocessing the remotely sensed samplé data, Clearly, it will be minimum

¢, known, the only cost involved is that of

when the sample size n is the smallest jnteger greater than or equal to

e. (1-e.)
LS ) (3.11)

. 29020
(l-—@z @2) o
For when @l and @2 are unknown, there are two types of cost involved: one
is the cost of processing the total sample data, say at the rate of 1 dollars

per data point and the other is the cost of obtaining ground truth, say at

the rate of c, dollars per data point. Then the cost associated with a

sample of size N =n + Nl + N2 is of the form:

cN) = cyn + (cl+c2) (N1+N2) . (3.12

The purpose is to find N (i.e., n, N. and N2) which minimize C(N) subject to

it

. 2 : : .
MSn(pl) < o0 . This is done in Appendix 2 where we derive explicit expressions

for n, Nl and N2 in (A.9).



4. AN EXAMPLE

Certain sites in Hill County, MMontana agd Burke County, North Dakota
were selected to investigate wheat identification performance for the ERTS-1
satellite data during 1973. For the sites in Hill County, there were three
acquisition periods, covering both winter and spring wheat seasons, for
which ERTS-1 labeled data were evaluated against the ground truth to ascer-
tain wheat identification performance. In the case of the site in Burke
County, there were only two acquisition periods covéring the spring wheat
season. For the classification identification performance results and other
details, refer to Appendix 3.

Considering ¢, to be the omission percentage for the non-wheat data

i
points and ¢2 for the wheat data points, we give sample size results in
Figure 1-7 for the various cases of omission percentages listed in Appendix
3, assuming different wheat proportions in the area and %ﬁ?= .01l. Based on
these results, the following conclusions are drawn: \

1. Expected labeled wheat proportion, increases as the actual

e
proportion of wheat, P> increases for the area, though not strictly.
Though to a certain extent it depends upon the magnitude of the
omission percentages for both non-wheat and wheat data points,
it tends to centralize away from too low or too high values for
the percentage.

2. Sample size for the unlabeled remotely sensed data first increases
as the actual wheat proportion increases and then decreases later

.on; the point of decrease depends upon the size of the two omis-

sion percentages.



3. All sample sizes increase as the total omission rate @1 o5 @2

increases.

.

4, Sample size, for the unlabeled recmotely sensed data is much

1’ ®2 are unknown compared to when these are known.

5. In the case of &

larger when ¢
1’ ®2 unknown, the sample size for the unlabeled
remotely sensed data is proportionzal to c2/cl, the ratio of two
types of cost.

6. Sample sizes for ground truth of wheat and non-wheat are inversely

proportioned to CZ/Cl'

7. Sample size for the ground truth of wheat is larger than that for

non~-wheat when the expected labeled wheat proportion is below .5.
Reverse is the case when such proportion is above .5. A similar
trend holds against the actual wheat proportion, though not
strictly.

8. Sample size for the ground truth increases as either of the two

omission ﬁercentages increases when the other is held fixed.

For making a comparison of sample sizes irrespective of the wheat propor-
tion which, in fact, is unknown, a suitable criterian is to determine the sample
'sizes against values for the coefficient of variation, C.V.=0/p. Generally
the wheat coverage in sany area of interest is expected to be somewhere in
between 1 percent and 20 percent. As such we here give sample sizes for the
unlabeled remotely sensed data and the ground truth of wheat as well as non-
wheat by specifying o = .01 and considering certain C.V. values in a 5 to 50
percent range. Numerical results are presented in Table 1 for all different

cases of & ¢, values that arise from the wheat identification performance

1’ 72



results given in Appendix 3. Moreover, for certain cases the sample sizes

are sketched in Figure 8-14. The following conclusions are drawn:

1

All samples sizes increase as the total omission percentage

@l S @2 increases.

Except for the sample size for the ground truth of wheat, sample
sizes decrease as the coefficient of variation increases. These
are generally very high in numbers for the 5 percent co-efficient
of variation but leveis off when the co-efficient of variation is
50 percent.

Sample size for the unlabeled remotely sensed data increases con-
1’ @2 are unknown compared to their known case.

Again, all sample sizes depend upon the ratio c2/cl as regards

siderably if ¢

the two types of cost.

Sample size for the ground truth of wheat is consistently larger
than that of non-wheat. Also, it shows viry small changes over

the range of co-efficients of variations being considered here.

In cases where there is a high overall omission percentage, and

particularly for the non-wheat, it tends to increase as the co-

efficient of variation increases.



TABLE 1:

Sample sizes:

n for the unlabeled remotely sensed data, N

for the ground truth of

1
wheat, and N2 for the ground truth of non-wheat when ¢ = .01
Coeffi- Wheat Omission rates Expected ¢1,¢2 ¢1 and @2 unknown case
zient of | propor- ¢l ¢2 labeled i =
owny C./E-=5 c,/c,=20
variation| tion wheat 2/ 1 2/ il
. _|Sample
pl broportion i Sample Ground truth | Sample Ground truth
e1 5 size sample sizes size sample sizes
n Nl N2 n N1 N2
0.050 0.200 0.200 0.300 0.3000 8400 2¢82% 7604 2195 - 42979 550 az:
’ 0.100 0.250 0.2300 4192 12112 2832 1022 19100 2977 5t
0,150 0.100 0.3000 3735 13 CIS 2700 5v9 16638 204 H7?
0.100 0.150 0.2500 3334 92¢o 2083 c20C 18319 1732 1%
0.050 0.2C0 6.2000 2055 7275 295 5oy 11134 1059 456
0.050 0,100 Oy 2200 2372¢€ 56€7 974 33¢€ 8533 784 7¢
0.000 0.650 0.1990 1766 2170 0 29 2574 0 a
0.100 0.100 0.200. 0.300 0.2500 7500 L7132 8390 1068 39712 7205 918
0.1C0 0.25¢ 0.1650 320- fo0ce 2571 477 15875 2520 405
0.150 0.1v0 0,2250 31C0 3522 2552 =79 15CSH &5 23¢C
0.100 0.150 0.1750 2567 7625 2212 293 12030 28cC6 247
0.050 0.200 0.1250 1945 5345 1295 264 3308 2076 22¢
. 0.059 0.190 0.1350 1617 4237 593 152 6518 817 125
0.000 0.050 0.0950 953 1127 0 3s 1278 0 21
T 0.150 0.067 0.200 0.300 0.2333 715¢€ 23893 8610 705 38469 7410 607
e : 0.100 0.250 01433 2537 94'c> 2995 309 1564C 2554 264
0.150 0.160 .2000 2845 3592 30¢1 184 13357 2611 157
0.100 0.150 0.1500 2267 coos 2238 191 11105 2903 162
0.056 0.200 0.1000 1€00 LCCo 1275 162 7224 2669 151
0.050 0.100 0.1067 1319 3058 93y 97 5694 819 81
0.000 0.050 0.0633 653 758 0 19 833 0 11
0.200 0.050 0.200 0.300 0.2250 6975 23460 8716 526 37816 7510 453
. . 0.100 0.250 0.1325 2721 8752 3003 229 13997 2568 126
0.150 0.100 0.1875 2705 872¢ 3098 137 13972 2650 118
. . 0.10¢ 0.150 0.1375 2109 gcs 2247 141 1960¢C 1916 120
0.050 0:200 0.0875 1420 6235 1261 122 6647 1063 103
0.050 0.100 0.0925 1162 33 976 71 5243 818 60
0.000 0.050 0.0475 502 565 0 12 620 0 7
0.250 0.040 0.200 0.300 0.2200 6864 231¢x 8778 419 37414 75€9 362
0 0.160 0.250 0,1260 2807 8LE1 3005 181 13597 2575 155
0.150 0.100 0.1800 2624 8550 3118 110 13729 2673 oy
0.100 0.150 0.1300 2695 §538 SaG 112 10293 1924 S6
0.050 0.200 0.,0800 13098 3870 1250 96 6287 1058 31
0.050 0,100 0.0840 1065 31456 869 56 4858 816 L7
0,000 0.050 0.0380 LCE 5§51 (4] 9 430 0 3
0.300 0.033 0.200 0.300 0.2167 6789 23014 8619 349 37142 76C8 301
. 0.100 0.250 0.1217 2530 8306 3006 150 13324 2580 129
0.150 0.100 0.1750 2567 BLLS 3132 91 13561 2689 78
0.100 0.15 0.1250 1545 6253 2253 93 10079 1929 g0
0/0S5C 0.200 0.0750 1234 3ec3 1242 79 6041 1055 67
. 0.CS0O 0.100 0.0783 i000 3010 sey Lo k761 - 815 39
0.000 0.050 0.0317 3540 375 0 7 405 0 4
0.350 0.029 0.200 0.300 0.21143 6735 22825 8847 239 36946 7635 258
o 6.100 0.250 0.1185 2578 81658 3006 128 13127 2583 110
0.150 0.100 0.1714 2526 8359 3141 78 13439 2700 67
- 0.100 0,150 0.1214% 1667 €1a7 2254 79 9923 1933 €d
0,050 0,200 0.0714 1120 S22 123¢C 67 5862 1052 57
. 0.050 0.100 0.0743 952 2911 960 39 4616 814 33
0.000 0.050 0.0271 293 321 0 G auy o 3
0.500 0.025 0.200 0.300 0.2125 665t 22725 3868 261 36797 2656 235
0.100 0,250 0.,1163 2532 80593 3006 112 12977 2565 96
0.150 0.10¢C 0.1¢€82 259% B255 31itg (2 13346 27C3 59
0.100 0.150 0.1138 1661 6167 2255 69 9805 1935 60
0.050 0.200 0.0687 331 3% 35¢3C 1231 58 5725 1050 50
0.050 0.100 0, 0212 516 2633 950 34 4506 813 29
0.0060 0.050 0.0237 257 2E39 0 5 300 0 3
0.450 0.022 0.200 0.30C 0.2}11 27 227¢ce 8EES 232 3€681 7€22 200
0.100 0,250 0.13u4 2399 1553 3006 9y 12860 25860 8%
0.150 0.100 00,1607 2870 B2NS 3110513 61 13272 2714 52
0.100 0,150 0.1167 1333 (Ce> 2,2:5S 61 9712 1'93°7: 53
0.050 0,200 0.0€0L7 3103 3513 L& 27 52 561¢ 1048 Ly
0.050 0.100 0.06L9 858 2975 954 30 K419 812 26
0.009 0,050 0,0211 2y 243 0 iy 2065 0 2
0.500 0.020 0.200 0.300 0.,2100 C63cC 22645 869 209 36500 768y 1e0
0.100 0,250 0.1130 2373 Fsz2 3006 89 12760 2567 71
¢.150 0,100 0.1C%0 26850 82L2 157 55 13213 4719 L7
0,100 0,150 03150 i9id 5953 2255 $S 9637 1938 Lg
0,0%0 0.200 00,0050 PR RTD RICYRe) 1224 46 59533 10406 L0
‘ 0.050 0.160 0.0670 bbb SHTT 951 27 K3ug 811l 23
0,000 0.050 0.0190 207 223 0 J 237 0 4



5. A LARGE ARFA CROP ACREAGE ESTIMATION
Our previous discussion, in essence, applies to crop acreage inventory
for an agricultural area which is homogeneous 'in respect to agricultural
practices and thus is not expected to be large enough. Since a major objective

of the JSC-EOD project is to perform or estimate crop acreages for a large

area using available remote sensing capabilities, we here suggest a sampling
procedure to procure sample data for the purpose of estimating a large area
crop acreage inventory and discuss the error analysis associated with it.

Once again, we assume that the frame is made of agricultural areas; the
non-agricultural areas in the region of interest can be easily excluded by
way of a monitoring system. As a first step in the sampling procedure, we
suggest having a geographical-based stratification which effects a division
of the region intc reasonably homogeneous areas with respect to physical and
climatological conditions; Considering additional factors of (i) the pre-
dominance of various crop-types and (ii) the latitude and longitude, a
finer stratification must be achieved. This is to obtain better discrimina-
tion for the underlying crop-types and to control variability which may
otherwise dominate over the distinction that exists betwgen the resolution
classes for these crop-types.

Note that as a result of stratification one may only need to consider
a part of the region for frame if crops of interest do not cover the whole
region. So depending upon whether the frame would require consideration of
the complete region or only a part of it, one should make a list of strata

making up the frame for the purpose of sampling.

Remoting sensing data gathered by an ERTS satellite is documented in

terms of scenes, each covering approximately an area of 100 x 100 miles and



divided into four strips where each strip has approximately 6,400 scanlines
in it. As such, we suggest a three stage sampling plan to be independently
carried out in each stratum: select randomly ERTS scénes at the.first
stage, strips within scenes at the second stage and scanlines within strips
at the third stage. Of course, one may consider one more stage in selecting
pixels within scanlines. However, sampling at this stage is excluded from
the plan because it is dinconvenient and unecoﬁomical.
Notations

Let R be the region (in the sense of frame) of interest for estimating
crop acreages. Suppose it is stratified into strata Rt’ t=l 5 2 o6 w0g iy W ED
weights wt, the proportion of pixels in tth stratum, t=1,2,...,L so that

L I
R= UR with Zwt=l.
t=1 '

g=1

In stratum Rt’ let It be the number of scenes whereas J, H and n denote the
number of strips per scene, number of scanlines per strip and number of
pixels per scanlines, respectively. From the previous paragraph it is
obvious that there is no need to distinguish between strata in the categories
of strips per scene, scanlines per strip and pixels per scénline. Next, let
etijh(ﬂk) be the expected proportion of pixels to be classified in Ty from

the hth scanline in jth strip of ith scene for stratum Rt’ E=1 325 cieia 5ilie

Then for Rt’
H

eri3 (M) = Z €19 T
h=1



the expected proportion of pixels to be classified in T from the jth strip

By (M = z Z t13h i

the expected proportions of pixels to be classified in =

J H
Z Z t:L_]h k) ’

the expected proportion of pixels to be classified in T Accordingly,

in ith scene,

K from the ith scene,

t

I
et(ﬂk) = EE

i=1

L
etm) = Y we (n) (5.1)
t=1

is the expected proportion of pixels to be classified in T k=132, « ooy
for Fhe region R.
Estimates

Suppose mt, r and s denote the corresponding number of scenes, number
of strips per scenes and number of scanlines per strip that one selected for

R t=1,2,...,L, using the stratified three stage random sampling described

t)
earlier. Let ntijh(“ ) be the number of pixels classified into M from the hth
selected scanline in jth selected strip of the ith selected scene in Rt.

Then considering the observed proportions of classified data points into

different crops for estimates, one has

. n_.. ()
o . ) = tijh 'k
tijh k n



2 ) 18 S
~ = l
ey (M) = nor EZ ‘25 B 50T o

j=1 h=1
. P
et(ﬂk) = hsmm Ei EE ntth( k) 2
t j=1 j=1 h=1
and L
e(nk) = EE v, et(wk) s k=1,2,...,m . (5.2)
t=1
. 1
Next, expressions for Var(et(ﬂk)) and Cov(et(ﬂk), et(ﬂk»(k%k ) can be
obtained without much difficulty. For example, refer to Section 10.8 in
Cochran (1963) for the general discussion on three stage sampling plan.
Hence, the covariance matrix of e is given by
- L
Var(e(nk)) = ES v Var(et(wk))
=1
and L
”~ A 2 ~ ~
Cov(e(nk), e(nk,)) = :E: W, Cov(et(ﬂk), et(ﬂk,)), k#k', k=102 e e sm . (5.3)
t=1

Similarly, an estimate of the covariance matrix is obtained by replacing

the unknown quantities by their estimates in (5.3). In this context, see

Chhikara and Odell (1974) who have discussed such results in greater details.
Now to obtain the actual crop proportions, there is a need to consider

whether or not the classification error matrix is the same for each stratum.

When the area is wide and large and the stratification is performed consider-

ing factors mentioned in the beginning of this section, it is quite likely that

these classification error matrices will not be the same for different strata.



In that case, find an estimate of Pys k=1,2,...,m, using (2.5) if the classi-
fication error matrix is known and (2.6) if %t is unknown for each stratum.
Denoting Py by pt(ﬂk) for stratum Rt’ it then follows that
L
P, = > wp (m) k=1,2,...,m (5.4)
t=1

when the classification matrices, say Pt’ t=1,2,:ss,L, are known, and
~ L A

pk - tzl wtpt(wk) s k= 1,2,00.,00 (5.5)

when these are unknown and are separately estimated using ground truth data
from each stratum. Next, Var(;k) and MSE(;k) are respectively obtained from
(A.2) and (A.7) after making an appropriate substitution from (5.2).

On the other hand, either there is the same classification error matrix
for all strata or can be made so by proper adjustment of signatures in the
classification algorithm for each stratum. For then an estimate of crop
proportions Py k:i,Z,...,m is directly given by (2.5) if the common classi-
fication error matrix is known and by (2.6) if it is unknown, using ;(ﬂk),
k=1,2,...,m of (5.1) for e. Hence, both estimates and their error analyses
are obtained by following the general procedure given in Section 2.

In fact, our approach in Section 2 is quite general and can be applied
to perform any large area acreage inventory by considering an appropriate
sampling scheme for both the unlabeled remotely sensed data and the ground
truthed data.

Once again if interest lies in estimating only the wheat acreage, the
two-crop' approach of Section 3 can be applied. Then an estimate of wheat

proportion is obtained from (3.4) or (3.5) as the case may be, either first



obtaining it stratumwise and then combining as we did abdve in (5.4) and
(5.5) or directly, depending upon whether or not the classification error
matrix is the same for different strata. Subsequently, the precision of
this estimate and the sample size necessary to achieve a desired precision
with minimum cost can be easily obtained by zapplying our technique of
Section 3.
Sample Size

Tuking the cost factor into consideration, suppose we want to determine
the sample size that either minimizes the szmpling cost for a specified
precision or maximizes the precision of the estimate for a fixed cost.
Though a large initial cost is involved in acquiring remotely sensed data,
presently we are mainly concerned with the cost of the processing and
labeling of the sampled data. In general, any such cost can be considered
as

C =cm +cnr+cmrs

t Ut 2t 3t

for the sample in stratum Rt’ and

L
C = (cl + c T + c3rs) Ez m,
t=1

for the area of interest.
In case of unknown classification error matrix or matrices, there is an
additional cost of sampling the ground truth, say C'. As such the total cost

involved is C = C + C'. Now if the cost is fixed, say C" < C,, a determina-

0,
tion of sample sizes for both the unlabeled remotely sensed data in all

three categories and the ground truth for various crops can be achieved by

solving equations obtained by equating the partial derivatives of



~

MSE(ﬁk) +A(C"-Cy) k=1,2,...,m

where X is a Lagrange multiplier, with respect to mt, r, s and the ground

~

A 2
truth sample sizes to zero. Similarly, when the MSE (pk) is fixed, say Ok,

k=1,2,...,m, again this can be achieved by considering the function

2
k])

for minimization. This, of course, would lead to k different values for

c" + xk[MSE(;:k) - = 1,0, 0 g
various sample sizes unless we consider the minimization from the point of
a specific crop-type proportion estimate. On the other hand, a unique
determination can be obtained by considering the largest value obtained

in each case.

It may be pointed out that under this procedure, it will be difficult
to give any cloéed form expression for any sample size and its carrying out
would involve some optimization technique.

If the classification error matrix (or matrices) is known, the sample
sizes mt(t=l,2,...,L), r and s can be easily determined by minimizing

Var(e(ﬂk)) + A(C—CO) or C + Ak[Var(e(ﬂk)) - 02 as the case may be. More-

1
over, the sample size problem in the case of unknown classification error

matrix or matrices can be treated either by assuming the classification

errors known or by investigating the two types of sampling separately.



6. FURTHER REMARK

In actual practice it may not be possible to have every data point
identified with one of the crops in the arez of interest, particularly if
the area is large. This may be caused by not knowing all crop-types that
exist In the area or some data points representing pixels falling on the
field boundaries. As such the model developed in this report may be viewed
somewhat restricted. Its use for performing a large area crop inventory
may be considered subsequent to obtaining information about the agricultural
practices in the area.

It is extremely difficult to model the problem of a large area crop
inventory in its full generality unless certain constraints are imposed.
The condition of identifiability is one such conétraint that one must have

in order to deal with the problem analytically.



APPENDIX 1

S

A.l. Variances of Components of p

A

For p given in (2.5), the covariance matrix,

E[(p - p)(p-p)] =P E[(e-e-oleh"
-
zf) - e hveht
" th

where V denotes the covariance matrix of e. Denoting the (i, j)

element of P—l by le, it follows that the variance of Py the ith

~

element of p, is given by

m m @
Var (p,) =Z(Plj)2 Var (ej) +z pid pik ooy (ej, ek)
j#¥l j=1 k=1
j#k

~ ~

where V(éj) and Cov (ej, ek) would depend upon the sampling scheme
used for obtaining samples of unlabeled remotely sensed data points.

In the case of random sampling with sampling unit as pixel (i.e. one
data point),

n e.(1 - e.)

o

Var (ej) =
and

- e.e

~ k . .
Cov (ej, ek) = - —i~l, j#k,3j,k=1,2, .., m,

ignoring the finite population correction due to large population size. Next

(A.1)

(A.2)

(A.3)



an unbiased estimate of these quantities is given by

~ = e.(1 -e.)
Var (ej) = S

A ~

e, e
Cov (ej, By =acd = i#Fk, j, k=1, 2, .., m.

k) n-1’°

On the other hand if the sampling unit is a 5 x 6 mile segment con-
sisting of r pixels then considering a random sample of m segments
(here for the sample size one may considef n = mr data points) from
the total of M segments in the area of interest and again ignoring the

finite population correction, one gets (Cochran, 1963)

and
M _ (A.4)

: (.. = e Jle = &), il ik
n (M-1) gg; g j &kl k

~ ~ _ l
Cov (ej, ek) =

j’k=l, 2, uo,m

where eji denotes the proportion of classified data points in ﬂj for

the ith segment. Once again, for their unbiased estimates

m

/\ ~ -~
: jg )’
Var (e.) = -
(ey) R CPERS

ml = l) JL
a=1

and



m

\ o Lo 1 -~ ~ PN A
= — = — k
Cov (ej, ek) ) EZ (eji ej)(eki ek)s i#k,
i=1

i, k=1, 2, ..., m.

Similarly, components of V and their estimates can be obtained for other
types of sampling plans. Making appropriate substitution in (A.1) or

(A.2), variances for the components of p and their estimates are then

obtained.

< >>

A.2. Mean Square Errors of Components of

> >

First we calculate the bias of p given by

Lol -~

E[p-p]

It

Bias (p)

E [P_le - P_le]

E [P t(e=e) + (B * - P 1ye]

Tt

E [P 1

it

— P_ ]e (A-S)

A

because the first term is zero due E(e-e) = 0 for a given P_l. Clearly,

. : T i)
the bias depends upon how much bias there is in P ~, and

1

Blas (8} = (Bias (F D))e.

A
-~

In order to find the mean square error of any component of p, let us

first consider the evaluation of matrix,

A A

E [(p-p) (-p)"1 = E [(2 Y6 - ey te = p7leyT

e) ]



SO

B [0 @) (e-0TE™HT + @ -2 e’ @7 - H)

1 1

0 v e b e @l - et @t - hT

~

where E stands for expectation with respect to P. Again, denoting the

J

(i, j)th element of P—l by p™J and that of P-'.1 by pHJ, it follows from

- .th N .
(A.6) that the mean square error of By the i component of p, is given

by . n m m o
MSE (;i) = E E (;’ij):2 Var (;j)-*_z Zl’;ij 1311\ Cov (ej,ek)
j=1 j=1 k=1
- m m-. m jfk
PSRt Y Y e nEtath %],
a1 ' J=1 k=1
j#k

I D e e, I

Once again, V, i.e. Var (ej) and Cov (ej, ek), jand k =1, 2, ..., m,

may be obtained as in (A.3) and @A.4). If some other sampling plan is used

-

for selecting remotely sensed data to obtain the estimates ej's, expres-—

sion for V can accordingly be obtained. To evaluate expectation in (A.7),

one needs to find the distribution of P. This will, of course, depend
upon how P is obtained. In general, it will be difficult to obtain any

exact distribution of P. However, if the sampling of ground truth involves
separate independent samples from each crop and P is obtained as the

matrix of observed proportions among randomly selected pixels'classified

(A.6)

(A.7)



~

into different crops using a classifier, each column vector of P has a
multinomial distribution and is stochaotically independent of the others
in P. Since expectation in (A.7) is for elements of P—l, it may not be

easy to derive the MSE (ﬁi) in a closed form, especially if the number of

crops is large.



APPENDIX 2

Two-Crop Case
First we derive the MSE(pl) as in (3.8).

Proof of (3.8)

~ ~ Co

Considering the estimates Ql’ @2 and e, being obtained from

independent sets of samples, it follows by an application of the S-method

that
2 2 2
JMSE(pl) =} Var(el) + \33 Var(@l) +\35. Var(@z)
. 1 1 2
. - 2
e -1+d ) o
. 1 " 1t 2
B ey Var(e,) + [:““j"“jf“'z Var(¢. )
(l—@l @2) 1 (1 @l @2) 1
[: e1 - @1 ¢ ~
S '——_———2 Var(é) .
(@l Ql-—d)z) 2
Hence
: 1 A el_q)l 2 ~
‘MSE(p,) = W (Var(el) + |1- I:q:gz Var(2;)
'el - él - &
ot 1o -0 Var(e) |} .
T2 (

Here dot with equality sigﬁ means equality with approximation. This
establishes (3.8).

For a determination of sample size necessary to minimize the cost

A
0

N
subject to MSE (Pl) = oZ as discussed in section 3, it is achieved by

minimizing the function



A

F = C (N) + » (MSE (ﬁl) = 02)

S

with respect to n, Nl and N2, where C (N) is éiven in (3.12) and MSE(Pl)
is given in (3.10). By rewriting, we have

) -2
F = c; B + (cl + Cz) (Nl + N2) +x 1 - @l @2)

i
n Nl N2

.[%1(1“81) - (1—pl)2 S st (1-0,) _ 02(1—®1-¢2)%}.

Taking partial derivatives of F with respect to n, N1 and N2 and equating

each to zero, one obtains the following set of equations.

=2 el(l—e> B
¢ - A(l—@l—Qz) 5 = 0
n
. -2 o, (1-9
(c1 + cz) - A(l—@l—<1>2) (l_pl)z 1 ( 21) = 5
Ny
, -2 2
(Cl + Cz) - A(l_q)l"q)z) Pl @2 (l—@z) 0
2
¥

Considering only the admissible solution of these equations, one has

B ‘/ Ael (l—el)
n = % 2
¢y (1-9 -—@2)

1
_ A o, (1-9.)
Ny = Aopy) ﬁ%/ =t 2
(Cl+32)(1—©l = @2)
. Ao, (-0,) '
g . \ (c,+c,) (1-9, -0 )2 :
152

(A.8)
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Considering that MSE'(pl) = 02 and making substitution in (3.10)

for n, N, and N, obtained in (A.8), one gets

1

U SR [\/clel(l—el) + @pp) leptey) ¢ ey + Pl\/<°1+°2)©2(1'®2)—l

2
o (l—ol—@z)

-_—

After substituting for VA in (A.8), the sample sizes n, Nl and N2 are obtained

as following:

n gf e_w;(l‘el)/ el [\/clel (=) + (1—Pl)\/(cl"'cz)®l(1—@1)+Pl\/(Cl+C2)<P2(l—‘Pz)]
o (1—91—®2)

e ’ = e
Nl = (¢ pl) %/@l(l Ql)[¢&1el(l—el) S (l—pl)\/aél+52) @1(1”91)

2
+p1\/(cl+c2)<b2(1—<bz§
_ . — = — ) - — ~ —
N, - Py [¢,Q 4@2)[}/ e, @mey) + (-p V(e ¥e,)e; (A-0))
e
2, 2 V1%
o (l—¢l~®2) :

+pl\7(cl+cz)@2(l—¢2£]ﬂA.9)

It can be easily seen that n is a monotone increasing and Nl’ N2 are monotone
decreasing functions in CZ/C , the ratio of two types of cost. For when

e ¢l’ @2, are unknown, estimates of n, Nl and N2 can be obtained from (A.9)

by replacing these unknown quantities by their estimates.



APPENDIX 3

ERTS-1 DATA INVESTIGATION

FOR

WHEAT IDENTIFICATION

1l. Hill County, Montana

. Complete ground for evaluation in 2 x 6 mile area in Hill
County North

. Ground identifications of wheat, barley, oats in Hill County
) South

ERTS-1 data evaluated at three acquisition periods covering
spring and winter wheat seasons '

Date Winter Wheat Stage Spring Wheat Stage
May 23 Greening Pre-emergence
June 27 Heading 1007% cover
July /4 ' Mature Headed

. Classification performance results:

W - Spring/Winter Wheat
NW - Oats/Barley/Pasture

Commission/Omission Percentages

W NW W NW W NW

W 70 30 W {90 10 W |80 20

NW |20 80 NW |15 85 NW 5 95
May 23(tl) June 27(t2) July l6(t3)

W NW W NW W NW

W I?o: 11 W [?o 10 w [95 5

NW 5 95 NW 5 95 NW 0 100
May, June May, July May, June, July

(t;5t,) (t5t5) (ty5t,,t5)



2. Burke County, North Dakota

. Complete ground truth for evaluation in 2 x 10 mile area
: ERTS-1 data evaluated at two acquisition periods
Date Spring Wheat Stage
June 5 3"-4" growth
June 23 Jointing
. Classification performance results:

W - Spring Wheat
NW - Barley/Oats/Pasture/Surmer Fallow

Commission/Omission Percentages

‘ W NW W NW

w [75 25 W [85 15

NW 10 90 NW 10 90
June S(tl) June 23(t2)

W NW
W {90 10
w Lo o
June .5, June 23
(t;5t,)
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SAMPLE SIZE FOR THE GROUND TRUTH OF WHEAT, N,
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SAMPLE SIZE FOR THE GROUND TRUTH OF NON-WHEAT, No

1O /
100}~ / |
sol- /
aal- ./
0 .\,6:{’/0
70~ s
- 19,\
60
o y
/ o
50~ ' .
/ ’lg/o
- /o &\/
40 o o o/ 0 5
/ / 5t
0 © /
o o/ ,,‘06‘0/0 @?’5 \6
30 / o/ &\ 0% % O/‘O/o
- / o” P
= : o//o \O
o/ o/l)/° &) 2= .0.4_...0
o / yd = .\6\0';__0/
20} / o vl @})/o” - \0
/o/ °4°/ /o/°/® - 05‘@0’2’0/0
= 5 e \"o—°"
/ /° O/Zé/ 0/0/0
L ° e = o— = -
T ) $,-0, 227
o / - 0/0/ /0’0,..0/0"
= / o/ggo/o/ o’_o"o/o —0
P
Ol v v v v b by
00 0Ol 02 03 04 05 06 O7 08 09

ACTUAL WHEAT PROPORTION

Case: &, , ®,unknown and ¢,/c, =5

(et VoD el =

A



SAMPLE SIZE,n

500 0—9 O—0—0—0,

/o/ \°\
B ’
- v 7
v ~°
450 - U
el
Vi
400 /o/
- o
350
300
[ ’0._-0-—0-——0—-0\
(2,6 °/°/° : °\°
250 2" 0" -
&%
o \0‘ o/
= \”.o/
&o/ _ &
200 - S 15.05
/0/ ‘ o o-"o¢2°=. 20
=0 —o—0—<o___ —
— ° o/o/o::/z/o:‘;%o\o o\°\° /3 /O O
| PR g o 2.
150}~ / s / | RN /s
o /<> /0 = /\/é\ ° ' ¢
° /o ®[=.05,@2- (O oe)
T~ °/ /0 /O,_.o—o—o\ ‘?\\ o
(+]
o/ /o I/o/o \°\°\° ./O\O
IOO_ ) /° ~No
c/o °/° \°
- /7 $,:0, &, =.05
(¢} ¢] l ! ;:: -
S50 °/ | /0/0/0""0 ' \o\o
/o/°/° \o
/O
oL S 1 o 0o bbb b a1
0.0 0.2 0.4 Q.6 0.8 1,0

ACTUAL WHEAT PROPORTION
Case: @, ®, unknown and c,/¢;=20

FIQIIRE K



SAMPLE SIZE FOR THE GROUND TRUTH OF WHEAT, N
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SAMPLE SIZE,
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SAMPLE SIZE FOR THE GROUND TRUTH OF WHEAT, N,
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